Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry.

Author: Welle CG1, Contreras D2.
Affiliation:
2University of Pennsylvania diegoc@mail.med.upenn.edu.
Conference/Journal: J Neurophysiol.
Date published: 2015 Dec 30
Other: Special Notes: jn.00137.2015. doi: 10.1152/jn.00137.2015. [Epub ahead of print] , Word Count: 263


Abstract
Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo, the laminar geometry and single neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20-50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers, and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth, and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep layer oscillations, suggesting that superficial and deep layer of cortex may utilize independent, but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex.
Copyright © 2015, Journal of Neurophysiology.
KEYWORDS:
GABAA; cortical column; gamma oscillation; spontaneous activity; visual cortex
PMID: 26719085

BACK